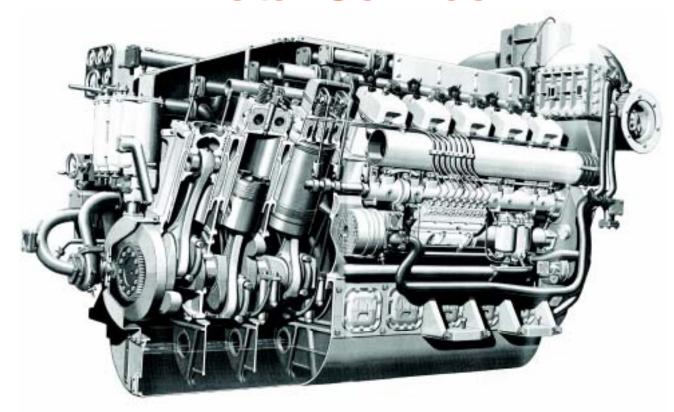

Dimensions

Engine type		В	H,	$H_{_2}$	L
D441-V12	mm	2400	2230	740	3410
D441-V16	mm	2400	2230	740	4150
TD441-V12	mm	2400	2560	740	3305
TD441-V16	mm	2400	2560	740	4045
TBD441-V12(K)	mm	2400	2710	740	3910
TBD441-V16(K)	mm	2400	2710	740	4650

Engine type	Weight ⁴⁾ (t)
D441-V12	10.3
D441-V16	13.0
TD441-V12	10.7
TD441-V16	13.4
TBD441-V12(K)	11.5
TBD441-V16(K)	14.0

4) Dry

WÄRTSILÄ® and DEUTZ® are registered trademarks. Copyright © 2006 Wärtsilä Nederland B.V.


Wärtsilä Nederland B.V.

P.O. Box 10608 8000 GB Zwolle Office: Hanzelaan 95 8017 JE Zwolle The Netherlands

Tel. +31 38 425 32 53 (24 hrs) Fax +31 38 425 34 71 service.sales.nl@wartsila.com www.wartsila.com

Total Service

WÄRTSILÄ DEUTZ marine engines

Characteristics

- Rigid engine.
- Crankshaft in underslung arrangement.
- Cylinder heads with four-valves technology.
- Direct injection.
- Engine with of without turbochargers and air cooler.

Benefits

- Reliable.
- Low fuel consumption.
- Easy maintenance.
- Long service life.

Engine description

Crankcase The crankcase is made of cast iron with heavily ribbed bracing of the

underslung bearing pedestals, giving high rigidity of the engine.

Crankshaft The crankshaft is made of forged steel, has hardened journal pins and has

bolted counterweights. Power take-off at both crankshaft ends is possible.

Torsional vibration

damper

Fluid-viscosity vibration damper.

Cylinder liner The water-cooled cylinder liner is made of special wear-resistant centrifugally

cast iron.

Connecting rod The drop-forced obliquely split connection rod has a serrated joint.

Two bolts tighten the bearing cap to the connecting rod foot.

Piston The piston crown of the oil-cooled piston is made of light metal.

Cylinder head The cylinder head is made of spherical graphite cast iron.

Each cylinder head has two inlet and two exhaust valves with valve rotators.

Four bolts secure the cylinder head to the crankcase.

Camshaft The cams and bearing surfaces of the camshaft are hardened.

Injection pump The engine has a block-type injection pump.

Governor Hydraulic governor.

Fuel system The engine has a fuel supply pump, a fuel transfer pump to fill the high

service tank and a duplex change-over filter.

Lubricating oil

system

The engine has a wet or a dry sump, gear pump and a lubricating oil filter.

D-engines have a lubricating oil cooler attached to engine in case of a

fresh-water cooling system.

TBD-engines have a lubricating oil cooler in case of a low temperature or

seawater circuit.

Starting system The engine is started with compressed air via starting air valves, which are

mounted in the cylinder heads.

Cooling water

system

Options:

Single-circuit mixed cooling.

Twin-circuit central cooling.

Indirect cooling system.

Exhaust gas system Engine type with a 'D' has a water-cooled exhaust manifold.

Engine type with a 'T' has isolated exhaust lines.

Turbocharging Engine type with TBD: The engine has a water-cooled turbocharger at driving

end and a charge-air cooler.

Classification By all established classification societies.

Technical Data

Engine type ³⁾		D 441V12	D 441V16	TD 441V12	TD 441V16	TBD 441V12(K)	TBD 441V16(K)	
Model		45° V-engine						
Number of cylinders		12	16	12	16	12	16	
Bore / stroke	mm	230 / 270	230 / 270	230 / 270	230 / 270	230 / 270	230 / 270	
Displacement	I	134.6	179.5	134.6	179.5	134.6	179.5	
Compression ratio		15	15	14	14	13.3	13.3	
Direction of rotation		clockwise and counter-clockwise						

F	Power	ratings	for marir	ne propu	Ision un	its and	on bo	oard o	generati	ng sets
		41								

Rated output ¹⁾ at 600 min ⁻¹	kW	400	530	600	800	960	1280
at 1000 min ⁻¹	kW	630	840	940	1250	1800	2400
	r. v v	030	040	340	1230	1000	2400
Mean effective							
pressure	bar	5.7 - 5.9	5.7 - 5.9	8.6 - 9.0	8.6 - 9.0	11.8 - 15.4	11.8 - 15.4
Fuel consumption at	full load2)						
at 750 min ⁻¹	g/kWh	204	206	220	220	192	192
at 1000 min ⁻¹	g/kWh	209	213	222	222	201	201
Lubricating oil							
consumption	kg/h	1.6	2.2	1.72	2.28	1.8 - 2.2	2.2 - 3.0

¹⁾ ISO standard output (continuous net brake power) with a 10% overload capacity permissible for one hour within 12 hours. As per DIN 6271 or ISO 3046-I under the following conditions:

Air temperature 27 °C
Atmospheric pressure 1000 mbar
Relative humidity 60%
Cooling water temperature
before charge air cooler 27 °C

For marine propulsion engines, the MCR (maximum continuous rating) is a service power, to be understood as a continuous net brake power blocked at 100% load.

This complies with the ISO standard output, but under the following conditions:

Air temperature 45 °C
Atmospheric pressure 1000 mbar
Relative humidity 60%
Cooling water temperature
before charge air cooler 32 °C

T = Engine with turbocharger(s)

B = Engine with air cooler

D = Diesel engine

K = Increased power

The fuel consumption values are related to the indicated engine output and full load as per DIN 6271 with a tolerance + 5%, when using a fuel with a lower calorific value of at least 42,700 kJ/kg (10,200 kcal/kg).

³⁾ Explanation of model designation: